Copied to
clipboard

G = C24xC4order 64 = 26

Abelian group of type [2,2,2,2,4]

direct product, p-group, abelian, monomial

Aliases: C24xC4, SmallGroup(64,260)

Series: Derived Chief Lower central Upper central Jennings

C1 — C24xC4
C1C2C22C23C24C25 — C24xC4
C1 — C24xC4
C1 — C24xC4
C1C2 — C24xC4

Generators and relations for C24xC4
 G = < a,b,c,d,e | a2=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, de=ed >

Subgroups: 681, all normal (4 characteristic)
C1, C2, C2, C4, C22, C2xC4, C23, C22xC4, C24, C23xC4, C25, C24xC4
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C24, C23xC4, C25, C24xC4

Smallest permutation representation of C24xC4
Regular action on 64 points
Generators in S64
(1 47)(2 48)(3 45)(4 46)(5 14)(6 15)(7 16)(8 13)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)(25 35)(26 36)(27 33)(28 34)(37 41)(38 42)(39 43)(40 44)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 43)(2 44)(3 41)(4 42)(5 18)(6 19)(7 20)(8 17)(9 13)(10 14)(11 15)(12 16)(21 25)(22 26)(23 27)(24 28)(29 35)(30 36)(31 33)(32 34)(37 45)(38 46)(39 47)(40 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)

G:=sub<Sym(64)| (1,47)(2,48)(3,45)(4,46)(5,14)(6,15)(7,16)(8,13)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32)(25,35)(26,36)(27,33)(28,34)(37,41)(38,42)(39,43)(40,44)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,43)(2,44)(3,41)(4,42)(5,18)(6,19)(7,20)(8,17)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)>;

G:=Group( (1,47)(2,48)(3,45)(4,46)(5,14)(6,15)(7,16)(8,13)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32)(25,35)(26,36)(27,33)(28,34)(37,41)(38,42)(39,43)(40,44)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,43)(2,44)(3,41)(4,42)(5,18)(6,19)(7,20)(8,17)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64) );

G=PermutationGroup([[(1,47),(2,48),(3,45),(4,46),(5,14),(6,15),(7,16),(8,13),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32),(25,35),(26,36),(27,33),(28,34),(37,41),(38,42),(39,43),(40,44),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,43),(2,44),(3,41),(4,42),(5,18),(6,19),(7,20),(8,17),(9,13),(10,14),(11,15),(12,16),(21,25),(22,26),(23,27),(24,28),(29,35),(30,36),(31,33),(32,34),(37,45),(38,46),(39,47),(40,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)]])

C24xC4 is a maximal subgroup of   C24.17Q8  C24:3C8  C25.85C22  C24:13D4  C24:8Q8  C24.166D4
C24xC4 is a maximal quotient of   C22.14C25  C4.22C25

64 conjugacy classes

class 1 2A···2AE4A···4AF
order12···24···4
size11···11···1

64 irreducible representations

dim1111
type+++
imageC1C2C2C4
kernelC24xC4C23xC4C25C24
# reps130132

Matrix representation of C24xC4 in GL5(F5)

40000
04000
00400
00010
00004
,
40000
01000
00400
00040
00004
,
10000
04000
00100
00040
00004
,
10000
04000
00400
00010
00004
,
40000
04000
00200
00040
00003

G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,4],[4,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,4],[4,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,4,0,0,0,0,0,3] >;

C24xC4 in GAP, Magma, Sage, TeX

C_2^4\times C_4
% in TeX

G:=Group("C2^4xC4");
// GroupNames label

G:=SmallGroup(64,260);
// by ID

G=gap.SmallGroup(64,260);
# by ID

G:=PCGroup([6,-2,2,2,2,2,-2,192]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<